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Abstract
The exquisite sensitivity of zero-field muon spin relaxation to both static
magnetic order and dynamic fluctuations has been used to study the ordering
processes in a variety of exchange frustrated magnetic materials. Two distinct
ordering events are identified, and they each clearly show both dynamic and
static signatures. Phase diagrams for two classes of frustration are presented.
We also provide an extensive discussion of both approximate and complete
solutions to dynamic fitting functions, and show that the correct functions
used in our analysis yield more accurate fits and quantitative agreement with
independent measurements on the same samples.

1. Introduction

Frustration arises in magnetic systems through the presence of competing exchange
interactions. If this frustration is randomly distributed,and is present at a sufficient density, then
long-ranged magnetic order is not possible and the system becomes a spin glass. Assuming, as
is the case for most real systems, that nearest-neighbour exchange interactions are dominant,
we can distinguish two classes of exchange frustration: (1) bond frustration, where individual
exchange bonds may be of either sign; and (2) site frustration, where all of the exchange
bonds from an impurity site are opposite to those of the matrix. In both classes, the level of
frustration is a tunable quantity, so the evolution in behaviour can be studied as the exchange
distribution changes from all ferromagnetic (FM) to all antiferromagnetic (AF). The gross
phenomenologies are similar in the two cases. Introducing AF bonds (or sites) leads to a
reduction of the ferromagnetic ordering temperature (Tc) and the appearance of a new, lower
transition temperature (Txy) where spin components order perpendicular to the ferromagnetic
order established at Tc. Beyond a critical concentration of frustration, xc, there is a loss of all
long-ranged order and the development of a spin glass.
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The behaviour around Tc and the effects of increasing exchange frustration are readily
studied by conventional magnetization and susceptibility methods, while confirmation that
long-range ferromagnetic order is indeed established at Tc, and is not lost on further cooling
(there is no ‘re-entrance’) comes from neutron depolarization [1]. However, studying the
region around Txy is more challenging. Transverse ordering occurs in the presence of pre-
existing ferromagnetic order, so the bulk response is dominated by the (largely technical)
behaviour of the ferromagnet and its domain system. Mössbauer spectroscopy, especially
with an applied external field, has been used to demonstrate that ordering perpendicular to
the ferromagnetic axis does occur on cooling through Txy [2–4]. Furthermore, the local spin
correlations that develop below Txy depend on whether bond [5, 6] or site [7] frustration is
present. Unfortunately, the magnetic field used in the Mössbauer work has been shown to
severely affect the behaviour at Txy , with only a few teslas needed to almost fully suppress the
transition [8].

Numerical simulations of bond [9] and site [10–12] frustrated model systems have led
to the identification of a Txy-signature that is accessible in zero applied field. In both cases,
the ordering of the transverse spin components at Txy is associated with a peak in the spin
fluctuation rate. Ordinarily, such a peak would be detectable using bulk susceptibility;
however, the overwhelming response of the pre-existing ferromagnetic order makes this
impossible. We have turned therefore to zero-field muon spin relaxation (ZF-µSR) which
is simultaneously sensitive both to static magnetic order and to fluctuations in that order, even
in highly disordered materials. The ZF-µSR technique provides a complete and unambiguous
separation of the static and dynamic influences on the relaxation signal, so one can be studied
in the presence of the other: a critical requirement around Txy .

The organization of the remainder of this review is as follows. Following a brief description
of the samples and ZF-µSR methodology, we present results obtained for both bond and site
frustrated systems. Analysis procedures are treated only briefly, with a severe caveat on validity,
so that we can concentrate on the gross features of the signals and the phase diagrams derived
from the ZF-µSR data. With the frustration effects on magnetic ordering established, we then
turn to a more detailed discussion of muon relaxation functions, identifying the limitations
of some popular approximations and showing that a full solution is possible, obviating the
need for the more poorly motivated approximations, and yielding more accurate values for the
derived parameters.

2. Experimental methods

Two bond frustrated alloy systems have been studied. a-Fex Zr100−x has the virtue of being a
binary metallic glass with only a single magnetic species. It is stable for 88 � x � 93.2 and
evolves from a ferromagnet to a spin glass with increasing x [3, 13]. However, the spin glass
regime is only barely accessible, as the critical concentration (xc) is ∼92.8 [14]. In order to
access the ferromagnet to spin glass crossover more clearly, we turned to a ruthenium-doped
Fe–Zr glass: a-Fe90−x Rux Zr10, where xc is 2.3 [1, 15, 16]. While we have only studied this
system as far as x = 6, the glass is stable at least as far as x = 20 [17], well into the spin
glass regime. The effects of site frustration were investigated using a manganese-doped iron–
metalloid glass: a-(Fe1−x Mnx)78Si8B14 [7, 18], where xc = 0.31 and the glass can be prepared
at least up to x = 0.5.

Samples were prepared by arc-melting appropriate amounts of the pure elements under
Ti-gettered argon, followed by melt-spinning with a tangential wheel speed of 55 m s−1 in
pure helium. ZF-µSR measurements were made on the M13 and M20 beamlines at TRIUMF.
Sample temperature was controlled between 5 and 300 K in a conventional He-flow cryostat.
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Field-zero was set to better than 1 µT using a flux-gate magnetometer. Samples were 170–
200 mg cm−2 thick over a 16 mm diameter active area. A pure silver (99.99%) mask prevented
stray muons from striking any of the mounting hardware. Essentially 100% spin polarized
µ+ were implanted with their moments directed in the backward direction (i.e. along −z).
The subsequent decay e+ is emitted preferentially along the moment direction. The time
dependence of the µ+ polarization is conventionally followed by plotting the asymmetry (A)
between scintillation detectors placed in the forward (F) and backward (B) directions relative
to the initial µ+ flight direction (A = (B − F)/(B + F)) as a function of time. Histograms
containing ∼4 × 107 events were acquired with a timing resolution of 0.781 ns. Wherever
possible, the relative efficiency of the forward and backward detectors was determined for
each sample from late time data taken just above Tc, where the dynamic relaxation rate is the
fastest, the decay is a pure exponential and the muons are fully depolarized quite early in the
measuring window of ∼10 µs. Under these conditions, any observed asymmetry between the
forward and backward counters reflects unavoidable differences in the detector efficiencies
(sensitivity, gain, energy thresholds and geometrical factors are all significant contributors),
which can therefore be measured and corrected for. The time dependence of this corrected
asymmetry was then fitted using a conventional non-linear least-squares minimization routine
to functional forms described below.

2.1. ZF-µS R fitting functions

As a more detailed discussion of relaxation functions is given later, we restrict ourselves
to a basic introduction here. The materials studied here are both structurally disordered
(i.e. glassy) and magnetically disordered as a result of exchange frustration; therefore we
expect a distribution of local fields. The material will contain many magnetically inequivalent
interstitial sites into which a muon can localize itself. This large variety of muon sites and
the effect they have on a ZF-µSR spectrum allow the magnetic field to which the muons are
exposed to be described by a Gaussian distribution of local fields �B:

PG(Bi) = γµ

(2π)1/2�
exp

(
−γ 2

µ B2
i

2�2

)
i = x, y, z (1)
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y 〉 = 〈B2

z 〉 and γµ = 2π × 1.3554 × 108 rad s−1 T−1.
For static magnetic fields about a muon, when the muon stops at t = 0 with its spin
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y
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where θ is the polar angle of �B with respect to the z axis.
The muon spin relaxation function for zero external longitudinal field is the statistical

average of σz(t):

Gz(t) =
∫ ∫ ∫

σz(t)PG(Bx)PG(By)PG(Bz) dBx dBy dBz (3)

which yields

GKT
z = 1

3 + 2
3 (1 − �2t2) exp

(− 1
2�2t2). (4)

This is known as the Gaussian Kubo–Toyabe (KT) muon spin relaxation function, after Kubo
and Toyabe who first derived this expression [19], and we follow the prescription described
in [20].
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Figure 1. ZF-µSR spectra of a-Fe92Zr8 below Tc (left) and around Tc (right). Insets show the early
time regions where the KT minimum characteristic of static order is visible. Solid curves show the
lineshape calculated with the full dynamic GKT

z (t) (left, 50 K) and GSG
z (t) (right, 175 K), while

dashed curves show fits using the product function G(t) of equation (11).

Examining the inset to the 50 K spectrum in figure 1 we see that equation (4) correctly
predicts the ZF-µSR lineshape of the static moments. The 2

3 component corresponds to the
muon’s damped oscillations around B due to the inhomogeneity of Bx and By. The persisting
1
3 component represents the muons that stopped where the local field axis was parallel to the
initial spin direction.

In some disordered magnetic materials at any temperature (e.g. dilute alloys) and in
others near a transition temperature (e.g. around Tc in spin glasses and frustrated magnets) the
local static magnetic field around the muon can still be described by a Gaussian distribution.
However, the sample’s average field is better described by a Lorentzian distribution [21] as
the moments are physically more disperse or effectively more disperse due to the substantial
fluctuations.

PL(Bi) = γµ

π

a

(a2 + γ 2
µ B2

i )
(5)

is our Lorentzian field distribution and the probability ρ(�) of finding a muon site of value �

is [21]

ρ(�) =
√

2

π

a

�2
exp

(−a2

2�2

)
(6)

where ρ(�) was determined to satisfy

PL(Bi) =
∫ ∞

0
PG(Bi)ρ(�) d� (7)

so that the total field distribution in the sample is Lorentzian (equation (5)).
To obtain the dilute alloy zero-field muon spin relaxation function, GKT

z (t) of equation (4)
is integrated over the probability of being at a muon site with a given �, i.e.

GL
z (t, a) =

∫ ∞

0
GKT

z (t,�)ρ(�) d� (8)

to give the Lorentzian Kubo–Toyabe relaxation function

GL
z (t) = 1

3 + 2
3 (1 − at) exp(−at) (9)
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as originally derived by Kubo [22]. Equation (9) correctly describes the static ZF-µSR signal
shown in the 175 K spectrum in figure 1 and exhibits the same damped 2

3 component and
persisting 1

3 component as are seen for the Gaussian case, but with a shallower KT minimum
(figure 8; ν/a = 0).

The above Gaussian KT and Lorentzian KT relaxation functions describe the lineshape
due to static magnetic disorder in ZF-µSR spectra. Characterizing time-dependent disorder
in ZF-µSR spectra by starting from equations (4) or (9) and including the Markovian nature
of spin dynamics (strong collision model) is quite involved [20, 21]. However, the observed
magnetic fluctuations are often sufficiently rapid that the motional narrowing limit of Gz(t)
can be applied, which takes the form of an exponential [21, 23–26]:

GD
z (t) = exp[−(λt)] (10)

where λ is an effective 1/T1 muon spin–lattice relaxation rate.
Many real materials do not fall into either of these limits: the timescale of the magnetic

relaxation is neither so long that the moments are effectively static, nor so short that the
static contribution is washed out and only an exponential decay remains. Experimentally,
the KT minimum is still observed, but the 1

3 tail is no longer constant and now decays to
zero. The simplest description (and one that is essentially ubiquitous in the literature; see
for example [21, 23, 27–38] and references therein) of such data is provided by the following
phenomenological model: it is assumed that the (effectively) static moments can be described
by the above GG

z (t) or GL
z (t) and that the time-dependent behaviour arises from a random

dephasing of the muons by relatively slow (relative to the muon precession in the static field)
magnetic fluctuations. This argument leads to the so-called dynamical Kubo–Toyabe relaxation
(product) function:

G(t) = Gs(t) × Gd(t)

Gs(t) = 1

3
+

2

3
(1 − (�t)α) exp

(
− (�t)α

α

)

Gd(t) = exp[−(λt)].

(11)

The KT minimum is defined by α = 1 for a Lorentzian field distribution and α = 2 for
a Gaussian distribution in Gs(t). This product function is often sufficient for simulating
the experimental data; it provides a simple picture of the system under study and is easy to
compute, making least-squares fitting straightforward. For magnetic systems where there is a
clear distinction between static effects in early time channels and dynamic effects in later time
channels, equation (11) provides a good fit to the observed ZF-µSR pattern.

We caution that equation (11) is an approximation and only holds if � � λ [20]. This
condition is not met near Tc, especially for highly frustrated samples, and a proper treatment of
the dynamics is essential to avoid falling into the trap of using a stretched exponential in Gd(t)
and variable α in Gs(t) to analyse the data. We will return to this point in more detail later.

3. ZF-µSR results

TypicalµSR patterns for a-Fe91.5Zr8.5 are shown in figure 2 at 240 K (above Tc), 110 K (below Tc

but above Txy) and 5 K (below Txy). Above Tc there is no static order, but magnetic fluctuations
couple to the muon spin and cause an exponential decay in the observed polarization. The inset
shows that the exponential continues to the earliest time measured (∼1.5 ns), and no static
contribution is apparent. Below Tc, fluctuations (e.g. magnons) continue to depolarize the
muons, and an exponential decay at late times is still apparent. However, the starting point for
this decay is far lower than it was above Tc reflecting the rapid dephasing associated with the
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Figure 2. Left: ZF-µSR spectra of a-Fe91.5Zr8.5 above Tc (top), below Tc (centre) and below
Txy (bottom). Insets show the early time regions where the KT minimum characteristic of static
order is visible. Note the clear separation in timescales for the static and dynamic contributions.
Solid curves show the lineshape calculated with the product function G(t) of equation (11).
Right: temperature dependences of � (top) and λ (bottom) derived from product function fits
(equation (11)).

precession in a distribution of static fields. The characteristic KT minimum is clearly observed
at early times (inset), confirming the presence of static magnetic order. Finally, below Txy ,
fluctuations are greatly reduced, but still present, and the KT minimum due to static order has
moved to still earlier time, indicating an increase in the average field at the muon sites.

The data in figure 2 illustrate a primary strength of µSR studies: static and dynamic
magnetic effects can be observed simultaneously and they are sufficiently well separated in the
data that they can be distinguished with great reliability. In figure 2, the static KT contribution
is confined to the first 20 ns, while the dynamic decay is spread over the remaining 5 µs. The
temperatures illustrated have been chosen to be well away from the fluctuation maxima at Tc

and Txy so that the validity of equation (11) is not compromised, and the fits are excellent.
The right-hand panel of figure 2 shows the temperature dependences of λ and � derived

from fits using equation (11). Tc is well defined and can be assigned to the temperature at which
either λ diverges or � extrapolates to zero on heating. These values typically agree within
the experimental error of 1–2 K. Furthermore, Tc determined by the µSR technique is in full
agreement with values determined from bulk measurements (magnetization and susceptibility)
and by Mössbauer spectroscopy. This agreement is observed at all compositions and levels of
frustration, and serves to confirm that µSR is a consistent probe of the magnetic ordering.

On cooling below Tc, the dynamic relaxation rate falls as the fluctuations freeze out. For
non-frustrated samples, this slow-down continues down to the lowest temperatures measured
(typically 5 K in this work) and λ falls below 0.1 MHz [13]. For frustrated materials the decline
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Figure 3. Left: the phase diagram for a-Fex Zr100−x showing transition temperatures derived from
µSR data. Open circles show results derived from fits to the dynamic behaviour (λ) while triangles
denote those from analysis of the static signal (�). Also shown are results from χac (�) and
Mössbauer spectroscopy (•). Right: the phase diagram for a-Fe90−x Rux Zr10 (the same symbols).

is interrupted by a second peak: Txy . This peak was predicted by the numerical simulations
discussed earlier [9–12]. It is clearly visible in figure 2 and provides an unambiguous signature
of Txy . �(T ) also changes around Txy : there is a distinct break in the temperature dependence
as the transverse spin components freeze out and contribute to the static field at the muon sites.
�(T ) was fitted using the sum of two Brillouin functions (modified to allow for a distribution
of exchange [39]) each with different onset temperatures and saturation values. These fits are
shown as solid curves in the right-hand panel of figure 2. The break point provides a second
µSR-based estimate for Txy . As with the values for Tc, the two estimates for Txy are generally
found to be in good agreement, confirming that the static and dynamic signatures coincide as
expected [9–12].

Transition temperatures for the two bond frustrated systems studied here are presented
as phase diagrams in figure 3. a-Fex Zr100−x shows two transitions for x > 89, with Tc

falling to meet an increasing Txy as predicted by numerical simulations [9] and mean-field
calculations [40]. The two transitions merge at a critical composition of ∼92.8, beyond which
only a single, spin glass transition, Tsg, is observed. As noted earlier, there are only limited data
beyond xc as glass stability limits the accessible composition range. Both ac susceptibility
(χac) and Mössbauer spectroscopy have been used to determine Tc and these values are in
complete agreement with both the dynamic and static µSR measurements.

The a-Fe90−x Rux Zr10 system provides two advantages over the simpler a-Fex Zr100−x :
(1) we have full access to the spin glass region of the phase diagram, (2) there is a clear break
in the temperature dependence of the average hyperfine field (〈Bhf〉) below Tc [1, 15, 16]. This
break reflects the freezing of transverse spin components at Txy and is directly analogous to the
break in �(T ) seen by µSR, thus providing an independent, Mössbauer-derived check of our
Txy assignments in this system. The results are summarized as a phase diagram in the right-
hand panel of figure 3. Again, it is apparent that the static and dynamic µSR signatures of both
Tc and Txy are in complete agreement. Furthermore, this agreement extends to the transition
temperatures derived also from χac and Mössbauer spectroscopy. The match between the
glass stability and magnetic behaviour has allowed us to extend the a-Fe90−x RuxZr10 phase
diagram past 2xc, well into the spin glass region, where we observe clear evidence for a
finite-temperature spin glass transition, and continued agreement between all four methods of
determining Tsg.
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Figure 4. Left: the magnetic phase diagram for a-(Fe1−x Mnx )78Si8B14 derived from ac
susceptibility data (χ ′ for Tc, χ ′′ for Txy ), 〈Bhf 〉 from Mössbauer spectroscopy and both � and λ

from the ZF-µSR. Three transitions can be identified: ferromagnetic ordering at Tc, transverse spin
freezing at Txy and spin glass ordering only for x > xc at Tsg. Note the perfect agreement between
independent determinations of Txy . The inset shows data for the whole composition range studied.
Right: comparison of static order signals from Mössbauer spectroscopy (〈Bhf 〉) and ZF-µSR (�)
for a-(Fe0.725Mn0.275)78Si8B14. The data have been normalized to agree above Txy in order to
allow comparison of the change and signal stability below Txy .

Site frustration is expected to lead to transition behaviour that is very similar to the bond
frustrated case [10–12], and the phase diagram obtained for a-(Fe1−x Mnx)78Si8B14 (figure 4)
fully supports these predictions. The same decline in Tc with increasing frustration is seen;
however, there is now a threshold for the appearance of Txy . Unlike the bond frustrated case,
transverse spin freezing in site frustrated systems does not develop until the competing sites
form a percolating network [11, 12] and so ∼20% Mn is needed before Txy is observed. Once
both transitions are present, we again obtain perfect agreement between the static (�) and dy-
namic (λ) µSR signatures and also with bulk determinations (χac and Mössbauer spectroscopy).
The break in 〈Bhf〉(T ) is observed and again coincides with the break in �(T ), but unlike in
a-Fe90−x RuxZr10 [16], 〈Bhf 〉(T ) and �(T ) do not scale with each other below Txy . �(T ) rises
above 〈Bhf〉(T ) below Txy as the latter is sensitive primarily to the behaviour of the Fe moments
while the former is equally sensitive to Fe and Mn moments, and it is the ordering of the AF-
coupled Mn moments that dominates the changes at Txy in this site frustrated system [11, 12].
The two transitions merge beyond xc ∼ 0.31 and the system becomes a spin glass. In principle,
an antiferromagnet could emerge at high Mn dopings [11, 12], but the glass structure does not
admit AF ordering and so a geometrically frustrated phase should ultimately develop.

It is clear that the ZF-µSR technique can provide a wealth of information about the
ordering and magnetic transitions in frustrated magnetic materials. Its ability to unambiguously
distinguish dynamic and static effects is almost unique, making it an extremely valuable
probe of magnetic order. However, the dynamic and static influences on the observed muon
polarization decay are not truly independent. The examples shown so far have been chosen
to lie at two carefully chosen limits: almost static (� � λ) and motionally narrowed, purely
dynamic (λ � �). Many systems present muon environments that lie outside these simple
limits (this is always true around Tc, and was found to be the case over a wide temperature range
in some of our more frustrated samples) and the observed muon polarization decay cannot be
fitted in a meaningful way using equation (11). It is to the solution of this significant problem
that we now turn.
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Figure 5. Left: a lineshape comparison of calculated 100 K ZF-µSR spectra of a-Fe93.2Zr6.8 using
the product function (dashed curve) and dynamic KT function (solid curve). Right: fits to ZF-µSR
spectra of a-Fe93.2Zr6.8 using the product function (�) and dynamic KT function (◦).

4. Analysis: beyond the product function approximation

The failure of the product function as � approaches λ is gradual, and the distortions in the
data are therefore subtle and frequently missed. The KT minimum shallows, and the simple
exponential form of the long-time tail is lost. The left panel of figure 5 shows data taken at 0.8Tc

for highly frustrated a-Fe93.2Zr6.8. The product function (dotted curve) appears to reproduce the
form of the decay, but misses details around the KT minimum and the knee of the exponential
has the wrong shape. The fitted value of λ/� is ∼0.2, and therefore indicates that the data
set does not satisfy the requirement � � λ. The misfit to the shape of the decay is clear.
However, the full dynamic fit (described later) shows that λ/� is closer to 0.1, as the product
function systematically overestimates � at the expense of λ. ZF-µSR spectra of materials
where the signatures of static and dynamic magnetic effects are not clearly separated are not
effectively fitted by the product function, and the derived values for � and λ are not correct.

Figure 6 shows a direct comparison between lineshapes from the correct dynamic Kubo–
Toyabe function for a Gaussian distribution of fields, that were then fitted using the product
function with α = 2. At intermediate values of λ/� the product function clearly misses features
in the lineshape, and cannot describe the lineshape of a ZF-µSR spectrum of a material with
strong static and dynamic signals. Even at λ/� = 5.0 a misfit is apparent at early times.
Attempts to deal with this difficulty in the µSR literature include varying the value of α

(between 1 and 2) for the static signal (this effectively makes the calculated KT minimum
more shallow), and using a stretched exponential function Gd(t) = exp[−(λt)β] to mimic
the distortions in the dynamic signal [23–25, 27, 28, 32, 36–38, 41]. This will fit the spectra;
however, the product function is now being applied well outside its validity range, and the
values obtained for λ and � are adversely affected. In addition, fits in this regime are sensitive
to instrumental parameters: the initial (t = 0) asymmetry and the relative detector efficiencies
(which gives the t = ∞ asymmetry). Where the static field is large, or the early time data
are absent (e.g. at a pulsed source) the initial value of the asymmetry may not be properly
constrained. Similarly, if the decay continues beyond the end of the time window covered,
the asymptote may not be clear. Finally, even minor errors in the background corrections can
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Figure 6. Zero-field longitudinal relaxation
functions calculated using the dynamic
Kubo–Toyabe formalism (�) and simulated
with the product function, equation (11)
(solid curves). Note the severe misfit for
values of λ/� = 0.5 and 1.0.

lead to spurious slopes at late times where the observed asymmetry is essentially zero. If a
stretched exponential is used for such data, good fits with unlikely parameters are generally
obtained.

The biggest drawbacks of the stretched exponential are that it is easy to code, it looks like a
very wide variety of other decay forms [41, 42], it generally does a fair job of reproducing the
observations and it only requires one additional fitting parameter. Stretched exponentials
also yield stable, well-behaved fits even when a two-exponential fit can be shown to be
more appropriate [43]. Tests of alternative forms are rare, leading to the ‘conclusion’ that
a stretched exponential decay has been observed. However, demonstrating that the decay is in
fact a stretched exponential requires that other forms be actively investigated and conclusively
excluded. µSR data are rarely, if ever, adequate for this task. For a stretching parameter (β)
of 0.5, one needs data with a signal (start of the exponential) to background ratio of about
100, covering about five decades of time [42]. Most data sets (including those presented here)
rarely exceed a signal to background ratio of 10 and the start of the exponential is lost to the
static KT signal. The data typically cover little more than two decades of time as the first
∼100 ns are again lost to the static KT signal. It is simply not possible to use data of this
nature to establish the presence of a stretched exponential. By contrast, a simple log–log plot
can be used to exclude the stretched exponential form [43].

Changes in fitted values of α and β over a temperature scan with ZF-µSR spectra of a
sample will sometimes be interpreted in terms of two distinct populations of slow and fast
moments in the sample, in an attempt to justify use of the product function [20, 27, 28].
However, values of α which are not 1 or 2, and β 
= 1 are more usually signs that the full
dynamic Kubo–Toyabe or spin glass functions are necessary to fit the lineshape of the ZF-
µSR spectrum. We shall show that using the full dynamic Kubo–Toyabe forms of the ZF-µSR
fitting functions simulates experimental data where the product function fails, and provides
a clear physical understanding as the physics of the model is clear and it is applicable to all
measured timescales.
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Several attempts have been made to develop correct solutions for the full dynamic Kubo–
Toyabe relaxation function and so describe the effects of time-dependent magnetism on ZF-
µSR spectra in a tractable manner. The problem is more naturally solved in Laplace space [44],
displacing the core difficulty to the subsequent inversion of the Laplace transform needed to
return to a solution in temporal space. A method that used a series expansion to approximate
the inversion integral was developed [45], but this is limited to small static fields and rather
rapid dynamics. Alternatively, iterative [46] or perturbative [47] methods may be used to
solve for the relaxation function directly in temporal space, avoiding the need for taking the
Laplace transform. This description has been applied successfully to systems that exhibit
quite rapid dynamics in the presence of relatively small static fields [48], and while it may
seem mathematically and numerically easier to implement such solutions as they remain
in temporal space and avoid solving the full dynamic Kubo–Toyabe function via Laplace
transform methods [20], their validity has not been fully explored. Our materials clearly exhibit
very large local fields, and it is unclear how many iterations would be necessary to provide
the correct convergence of Gz(t) to describe the time-dependent magnetism. Additionally, the
standard numerical integration methods (e.g. approximation by a sum of areas) are notoriously
unstable [49–51], making non-linear least-squares fitting problematic.

The primary reason for not using the full dynamic fitting functions is that they are
computationally intensive. However, increasing availability of multiple-processor clusters
means that where it was once difficult to generate a single set of theoretical dynamic Kubo–
Toyabe, GKT

z (t), and spin glass, GSG
z (t), muon spin relaxation functions [20, 21], it is now

possible to least-squares fit experimental ZF-µSR spectra with the full dynamic relaxation
functions. We therefore revisit GKT

z (t) and GSG
z (t), and make comparisons with the dynamical

Kubo–Toyabe (product) function, mapping out the failure regions of the product function. By
discovering the analytic solution to the Laplace transform necessary for the computation of
Gz(t), and by using robust numerical techniques that require typically less then ten terms for
convergence, we have developed a useful method for generating the full dynamical Kubo–
Toyabe lineshape. Additionally, the numerical methods used (described in detail later in the
text) are based on simple recursion relations and geometrical series, so it is a straightforward
matter to generate the necessary computer code. With a 6.4 gigaflop Beowulf MPI cluster,
GKT

z (t) and GSG
z (t) were used to fit ZF-µSR spectra of a-Fe–Zr and a-Fe–Sc. Smaller

fitted errors were always recorded with the full dynamic functional forms, and essentially
no cross-correlations between fitted parameters were observed, leading to more stable fits.
Moreover, using GKT

z (t) and GSG
z (t) to fit ZF-µSR spectra removes the ambiguity associated

with stretched exponential product function fits. Finally, we have been able to make direct
comparisons with relaxation rates determined independently using selective excitation double
Mössbauer spectroscopy (SEDM), and show that they are in complete agreement [52, 53].

4.1. Dynamic lineshape calculations

The above Gaussian KT (equation (4)) and Lorentzian KT (equation (9)) relaxation functions
describe the lineshape due to static magnetic disorder in ZF-µSR spectra. When the magnetic
fields around the muon are time dependent, or the muon can hop from site to site resulting in
a time-dependent magnetic field, the behaviour of the muon is more difficult to describe.

If a Markovian modulation of the field B occurs with a rate ν, then

〈B(t)B(0)〉
〈[B(0)]2〉 = exp(−νt) (12)

with the range of the field distribution PG(B,�) given by equation (1) [20, 44].
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The time evolution of the muon spin relaxation function gz(t) (≡GKT
z (t) of equation (4))

consists of contributions from muons which experienced no changes in the magnetic field
around the muon at its site in the material up to time t , g(0)

z (t), only one change in the magnetic
field, g(1)

z (t), two variations in the field, g(2)
z (t), and so on:

Gz(t) =
∞∑

n=0

g(n)
z (t). (13)

If exp(−νt) is the probability that the muon did not experience a field change up to time t ,
with ν the relaxation time between changes, the time evolution of the relaxation function of a
muon which did not experience a field change can be written as

g(0)
z (t) = exp(−νt)gz(t) (14)

and the time evolution of the relaxation function of a muon which underwent one field change
is

g(1)
z (t) = ν

∫ ∞

0
exp{−ν(t − t1)}gz(t − t1) exp{−νt1}gz(t1) dt1 (0 < t1 < t). (15)

In effect we have

GKT
z (t,�, ν) =

[
exp(−νt)gz(t) + ν

∫ t

0
gz(t1)gz(t − t1) dt1

+ ν2
∫ t

0

∫ t2

0
gz(t1)gz(t2 − t1) dt1 dt2 + · · ·

]
. (16)

Equation (15) can be recast in terms of a Laplace transform:

fz(s) =
∫ ∞

0
gz(t) exp(−st) dt . (17)

We find [20]

Fz(s) =
∞∑

n=0

νn f n+1
z (s + ν) = fz(s + ν)

1 − ν fz(s + ν)
(18)

and, to extract the muon spin relaxation function with time-dependent magnetic effects, the
inverse Laplace transform is necessary:

Gz(t) =
∫ ∞

0
Fz(s) exp(−st) ds. (19)

The heart of Gz(t) lies in the calculation of fz(s):

fz(s) =
∫ ∞

0
{ 1

3 + 2
3 (1 − �2t2) exp(− 1

2�2t2)} exp(−st) dt . (20)

The original work of Hayano et al [20] obtained fz(s) in two parts. The first term of fz(s)
was written analytically and remaining terms were left in an integral form. Their formula
(equation (20) of [20]), as published, was incorrect. This difficulty was probably due to
typographical errors since numerical calculations of Gz(t) presented later in the same paper
have the correct form.

However, we have found that fz(s) does in fact have a full analytic form:

fz(s) = 1

3
s +

2

3

√
π

2

1

�
exp

(
s2

2�2

)
erfc

(
s√
2�

)
− 2

3
�2

{√
π

2

1

�3

× exp

(
s2

2�2

)
erfc

(
s√
2�

)[
1 +

s2

�2

]
− s

�4

}
. (21)
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Fz(s) (equation (18)) and its inverse transform Gz(t) need to be calculated for each time bin
of a ZF-µSR spectrum. Gz(t) cannot be obtained analytically. A numerical inverse Laplace
transform method is necessary to determine Gz(t). Many numerical inversion techniques
were tested [54]; however, Weeks’ method [55] using Laguerre functions was the only method
robust enough to compute Gz(t) over the range of times (∼8 ns–10 µs) encountered in a µSR
spectrum.

The basis of Weeks’ methods is the expansion of an original function f (t) into a series of
generalized Laguerre functions:

f (t)  tα exp(−ct)
N∑

k=0

ak
k!

(α + k)!
Lα

k (t/T ) (22)

where α, c and T are parameters. The Laguerre polynomials may be calculated from the
recursion relations [54]

Lα
0 (t) = 1

Lα
1 (t) = 1 + α − t

nLα
n (t) = (2n + α − 1 − t)Lα

n−1(t) − (n − 1 + α)Lα
n−2(t)

(23)

and the coefficients are given by

a0 = (N + 1)−1
N∑

j=0

h(θ j)

ak = 2(N + 1)−1
N∑

j=0

h(θ j) cos(kθ j)

θ j =
(

2 j + 1

N + 1

)
π

2
h(θ) = Re{((1 + cot(θ/2))/(2T ))α+1 F(1/(2T ) + c + ı cot(θ/2)/2T )}.

(24)

A final component to the solution of Gz(t) is the numerical approximation of erfc(x). The
complex error function is a close cousin to the complementary error function, erfc(x), via the
relation

w(z) = exp(−z2) erfc(−ı z) = 1

π ı

∫
C

exp(−t2) dt

t − z
(25)

with z = x + ı y. The function w(z) can be numerically approximated [56]. Since the core of
fz(s) is of the form exp{(· · ·)2} erfc{(· · ·)}, fz(s) can be recast in terms of w(z). With the full
analytic form of fz(s) (equation (21)) a more accurate, stable and faster numerical calculation
of Gz(t) is possible as w(z) converges to the required accuracy with a simple four- to six-term
geometric series. This avoids the necessity of integrating fz(s) in equation (20), which in
terms of calculation time is much more costly as well as much less numerically stable [49–51]
than the above method.

Examples of Gz(t) are presented for several values of ν in figure 7. Examining the simplest
case of ν = 0 (i.e. the static case) given by equation (4), the 2

3 component corresponds to the
muon’s damped oscillations around B due to the inhomogeneity of Bx and By. The persisting
1
3 component represents the muons which stopped where the local field was parallel to the
initial spin direction. For slow relaxation (0 < ν/� < 1), the recovery of the asymmetry to
1
3 is incomplete and Gz(t,�, ν) shows a decay at intermediate to late times that provides a
sensitive measure of the relaxation rate, while the lineshape at early times remains essentially
unaltered. For ν/� > 1, motional narrowing becomes significant, the static minimum is lost
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Figure 7. Zero-field longitudinal relaxation functions
assuming a Gaussian distribution of fields in the sample
for different relaxation rates ν.

Figure 8. Zero-field longitudinal relaxation functions
assuming a Lorentzian distribution of fields in the sample
for different relaxation rates ν.

and the dynamic decay slows down. For fast fluctuations (ν/� � 20) the spin relaxation
function reduces to GKT

z (t) = exp(−λt) [21].
To obtain the zero-field muon spin relaxation function for a dilute alloy, GKT

z (t) of
equation (16) is integrated over the probability of being at a muon site with a given �, i.e.

GSG
z (t, a, ν) =

∫ ∞

0
GKT

z (t,�, ν)ρ(�) d�. (26)

This is also called the spin glass (SG) muon spin relaxation function as it was originally
developed to model µSR spectra of dilute alloy spin glasses [21]. Figure 8 shows some typical
lineshapes for different values of relaxation rate ν. We see that for slow fluctuations (ν/a  1)
a decay of the persisting 1

3 component occurs while the 2
3 component is unchanged, although

the minimum observed is distinctly shallower than that seen for Gz(t) in figure 7. With faster
fluctuations (ν/a > 2), motional narrowing again sets in and the initial decay rate is reduced
by time averaging of the fields about the muon. For fast fluctuations (ν/a � 20) the spin
relaxation function is approximated by a root exponential: GSG

z (t) = exp(−√
λt) [21].

While calculations of GKT
z (t,�, ν) and GSG

z (t, a, ν) are involved and require significant
computational effort, advances in both computers and numerical methods have made full-
solution fitting accessible and practical. Despite these advances, one still finds very few
examples of the full formalism being used to fit data, and even when it used, only small-field,
fast dynamics cases are treated [47, 48].

4.2. Comparison of dynamic spin relaxation functions and product function

In order to identify the region of parameter space in which the product function is valid,
we have calculated curves using the full dynamic form of the dynamic Gaussian and spin
glass relaxation functions developed above, and then fitted them using the product function.
Parameter combinations for which the product function fails to fit the calculated curves (see
for example figure 6) or where the fitted values are significantly different from those used to
generate the original curves clearly indicate where the product function is an inappropriate
choice. Results of this analysis are shown in figure 9, where fitted values are plotted as
functions of either λ/� (for the Gaussian case) or λ/a (for the Lorentzian case). For �, λ
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Figure 9. Left: results of product function fits to the dynamic Gaussian KT GKT
z (t). Right: results

of product function fits to the dynamic spin glass KT GSG
z (t). �p/� and λp/λ are the product

function values versus the full spin relaxation function values.

and a, the ratio between the value returned by the product function fit (�P, λP and aP) and the
corresponding value used to calculate the original curve is plotted. Departures from a ratio of
one indicate that the product function is not returning the correct value.

For small values of λ/� (∼0), when the static and dynamic µSR signals are well separated,
the product function fits are quite good with α and β staying close to their nominal values of
α = 1 or 2 for Gaussian or Lorentzian static KT forms and β = 1. However, even at this limit,
λp is never in good agreement with λ, showing a ∼30% difference.

At the other extreme (λ/� � 1), the product function simulations appear to follow the
full lineshape quite well, but λp/λ is severely suppressed from its ideal value of one, and the
static term is essentially absent. Furthermore, the Lorentzian case yields a root exponential
decay rather than a simple exponential. In this fast relaxation regime, longitudinal field µSR
experiments are useful for distinguishing the static and dynamic magnetic information on a
sample [27].

It is the intermediate range 0 < λ/� < 1 that causes the greatest problems. A KT
minimum is generally apparent, but the product function gives a poor fit (see figure 6 for
λ/� = 0.5), and most of the fitted values are invalid. α is not severely affected for a Lorentzian
field distribution, with a ∼20% reduction from the nominal α = 1. However, for a Gaussian
field distribution, α suffers a gradual ∼30% reduction in the range of λ/� ∼ 0–2 followed
by a gradual increase back to its nominal value of two. For both field distributions, β remains
around one for λ/� < 0.2. Beyond this, for a Gaussian field distribution β increases to ∼3,
simulating some sort of power-law field distribution [41] up to around λ/� > 2 where it
returns to β = 1. For a Lorentzian field distribution, β increases by about 30% (suggesting a
power-law field distribution) up to λ/� ∼ 2 where it decreases towards its root exponential
limit of β = 0.5, sometimes leading to interpretation as evidence of a logarithmic decay
reflecting hierarchically constrained dynamics [41]. Clearly these interpretations of β in the
product function fits are unphysical, as the values obtained are numerical artifacts.

It is important to realize that in the discussion presented above, the product function was
applied to perfect data, i.e. there are no asymmetry or detector efficiency issues, nor is there
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Figure 10. Fits to ZF-µSR spectra of a-Fe92Zr8
using the product function (�), the dynamic KT
function (◦) and SEDM data (�).

any statistical noise on the curves. In a real experiment, both need to be taken into account
and can make fitting the experimental data more problematic.

Uncertainties in the detector efficiencies are inevitable. Ideally, both the initial asymmetry
and the relative efficiency of the detectors are determined using the sample under investigation.
The alternative strategy of employing a reference material fails as both parameters have a
significant geometrical contribution. However, in order to use the sample being studied, it
must exhibit simple behaviour at some temperature: it must fully depolarize the muons in
an accessible time and the form of the decay must allow reliable extrapolation back to zero
time. This latter requirement can be a serious limitation at pulsed sources where early times
are not generally available. If the initial or final asymmetries are allowed to vary during the
analysis, then the product function will yield greatly improved fits in the intermediate λ/�

regime, albeit at the expense of further distorting the physically relevant parameters that are
obtained from the fits.

Noise on the data is always a limiting factor, and since counting time is invariably a con-
straint, many of the subtle variations in lineshape that the dynamic spin relaxation functions
predict will be buried in Poisson noise (compare the real data in figure 1 with the synthetic data
in figure 6). This is especially relevant to the later time behaviour that the intermediateλ/� line-
shapes exhibit, where good statistics at late times demands a large investment in collection time.

5. Results of fits with GKT
z (t) and GSG

z (t)

First, let us examine fits to ZF-µSR data on a-Fe92Zr8, a frustrated magnet [13, 52], in figure 10.
Fitting with the product function (equation (11), �), at Tc, α = 1 (a Lorentzian KT) was found
to describe the functional form of the spectra. Within 30 K of Tc, a Gaussian distribution of
local fields, with α = 2, described the spectra. This variation of α around Tc suggests an
evolution in the local moment distribution as the collinear static order is established below Tc.
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�(T ) on cooling shows that the static magnetic field is zero until Tc is reached and collinear
ferromagnetic order is established for the z component of the moments. �(T ) steadily increases
on further cooling, until Txy is reached, and a more dramatic rise in the static magnetic field
occurs as x and y components of the moments order with their time average no longer being
zero.

The dynamic nature of the moment behaviour is revealed by λ(T ), in figure 10. When
the temperature approaches the paramagnetic to ferromagnetic phase transition from above,
magnetic fluctuations occur over a continuum of timescales and length scales, and ultimately
diverge at Tc. Below Tc, fluctuations are much weaker, the muon depolarization is dominated by
the effects of magnons and λ decreases with cooling. However, this decline is interrupted and
λ(T ) increases to a second maximum at Txy . The behaviour around Txy is clearly non-critical
as λ(T ) does not diverge. Below Txy all fluctuations gradually freeze out and λ approaches
zero.

Working slightly harder, GSG
z (t) around Tc and GKT

z (t) below Tc were used to fit the ZF-
µSR spectra of a-Fe92Zr8 on a Beowulf cluster. Fit results are also shown in figure 10 (◦), and
we see that excellent agreement is found between the dynamic G(t) and the product function
G(t). One advantage of the dynamic functional fit is that around Tc the spin glass function
lineshape tracks the experimental data slightly better (compare the solid curve GSG

z (t) to the
dashed curve G(t) of equation (11) in the right-hand panel of figure 1). Also, the fitted errors
are significantly smaller (by at least a factor of two on average) for the dynamic KT function
compared to the product function,with essentially no cross-correlations (always around ∼0.1%
compared with an average ∼40% cross-correlation between � and λ with product function
fits) between fitted parameters for the dynamic KT function fits. Good agreement between
product function and full dynamic spin relaxation function fits is consistent with the validity
diagram of figure 9 from the fitted range of λ/� ∼ 0.03 describing the a-Fe92Zr8 data. From
the spectral signal to noise ratio the fits are not sensitive to the ∼30% difference in λs between
the product function and full dynamic spin relaxation function fits. Additional evidence of
the fit validity is provided by selective excitation double Mössbauer (SEDM) spectroscopy
results [52]. SEDM spectroscopy is a modified Mössbauer technique that can explicitly
decouple static and dynamic magnetic disorder. The SEDM results indicated by the � in
figure 10 are in excellent agreement with the GKT

z (t) fits. Higher temperature SEDM spectra
could not be collected due to an inherent shortcoming of the SEDM technique: an observable
magnetic hyperfine splitting is required for the method to work. Near Tc, the six-line spectrum
has collapsed to the point where the individual Mössbauer lines are no longer observable.

A 1.2 at.% increase in the iron content, and hence the level of frustration in the a-Fe–
Zr system, takes us past the critical concentration of xc = 92.8 [13] so the system is now
in the spin glass regime. ZF-µSR data of a-Fe93.2Zr6.8 in figure 5 exhibit much the same
differences between full dynamic and product function fits. However, the product function
G(t) of equation (11) is unable to reproduce the spectral lineshape. A stretched exponential
form of Gd(t) is necessary (i.e. Gd(t) = (exp(−λt))β is used in equation (11)) to describe
the moment fluctuation information in the later time channels, a clear indication that the full
dynamic spin relaxation lineshape needs be used to fit the spectra. This is in agreement with
the validity diagram of figure 9 where the spectra fall in to the λ/� ∼ 0.2 range where the
product function clearly fails. Notice that even with the stretched exponential product function
fit, the lineshape is poorly represented (right-hand panel of figure 5) for the spectra near Tc,
especially at early (t ∼ 10 ns) and middle (70 ns < t < 500 ns) time ranges.

Again, GKT
z (t) and GSG

z (t) give better fits to the data and yield smoother temperature
dependences for �(T ) and λ(T ) and reduced cross-correlations between fitted parameters. A
much higher λ(T ) around Tc is fitted with the dynamic functions due to the more accurate
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Figure 11. Fits to ZF-µSR spectra of a-
Fe90Sc10 using the product function (�), the
dynamic KT function (◦) and SEDM data (�).

description of the ZF-µSR lineshape. While the two fitting procedures yield consistent
behaviour, the product function clearly provides an inferior description of the experimental
data (see for example the left-hand panel of figure 5).

a-Fe90Sc10 provides an example of a spin glass in which the fluctuations around Tc are
fast enough to push the product function even further from its region of validity. Here too
the static and dynamic signals in the ZF-µSR spectra can be fitted using the product function
G(t), shown in figure 11. On cooling through Tc, the data are best fitted using α = 1, the
Lorentzian KT functional form, while below Tc, a Gaussian distribution of local fields (α = 2),
fits the spectra. A change in the local moment distribution around Tc is thus again observed.
�(T ) is zero until spin glass order begins to establish itself, whereupon �(T ) increases until
all moments are static and in a spin glass state. Examining λ(T ), we see a steady increase in
the fluctuation rate as the sample is cooled towards Tc. Once Tc is passed, moment fluctuations
decrease with lowering temperature as spin glass order is established throughout the sample.

Fits with GKT
z (t) and GSG

z (t) below and above Tc, respectively, for the a-Fe90Sc10 ZF-
µSR data yield similar results to the product function fits (figure 11). However, once again,
fitted errors in � and λ are significantly smaller, and λ(T ) exhibits a much smoother transition
on cooling towards Tc, with the λ s around Tc being significantly larger than those obtained
from the product function. This smoother λ(T ) from GSG

z (t, a, ν) fits is due to the form of
the data being correctly reproduced over all time channels. The maximum fitted λ at Tc with
GSG

z (t) is double that of the product function G(t) with substantially smaller errors, a direct
indication that the full µSR lineshape is being fitted at the transition temperature where the
overall field distribution in the sample is shifting in character from Lorentzian to Gaussian.
This is consistent with figure 9 for the λ/� ∼ 0.3–0.6 range that these spectra exhibit. Further
corroboration of the GKT

z (t) fits is obtained by comparison with SEDM relaxation rate data
for a-Fe90Sc10 below Tc [53] (� in figure 11). Notice that the SEDM relaxation rates agree
exactly with GKT

z (t) fit results at all temperatures up to 90 K (where λ/� ∼ 0.1), unlike the
product function G(t) fits. By 100 K, the relaxation rate is too fast for SEDM to work as the
dynamic effects wash out the static contribution in the Mössbauer spectrum.
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6. Conclusions

ZF-µSR is almost unique in providing local information on fluctuations in the presence of
significant static magnetic order. As a result it can be used to study both the dynamic and static
ordering behaviour of frustrated materials. The data presented here have shown that ZF-µSR
provides detailed information that can be used to construct phase diagrams and make direct
and accurate comparisons with the results of independent measurements. We have shown that
partially frustrated materials exhibit two distinct ordering transitions (ferromagnetic ordering
at Tc, followed by transverse spin freezing at Txy) each with coupled changes in the static and
dynamic behaviour. As the frustration level is increased, the two transitions merge and the
system becomes a spin glass with a single transition temperature: Tsg.

We have shown that while a simple product function fit can provide an adequate preliminary
description of ZF-µSR data, the full dynamic lineshape solution invariably yields better fits.
Smaller fitted errors are obtained with essentially no cross-correlations between � and λ. Two
possible fit parameters, α and β, are removed, greatly reducing the possible ambiguity in the
fits. In addition, better agreement with other experimental probes of the dynamic magnetic
behaviour in samples is achieved (e.g. compare SEDM fit results with dynamic ZF-µSR fit
results). Most importantly, a consistent physical description of the magnetism in any disordered
sample is possible, without resorting to the unphysical or unknown field distributions implied
by α 
= 1, 2 or β 
= 1. As Beowulf clusters like the one used to fit data here become more
common, we expect the computational effort involved in fitting to the full dynamic functions
to cease to be a barrier.

Product function fits allow for a good qualitative description of spectra, necessary when an
experiment is under way. However, care must be exercised when comparing with results from
other experimental probes sensitive to time-dependent magnetism (e.g. χac and Mössbauer
spectroscopy). Moreover, since counting time is a limited quantity, collecting spectra of
sufficient quality that the full dynamic spin relaxation functions are clearly required may not
be possible.
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[25] Dalmas de Réotier P and Yaouanc A 1997 J. Phys.: Condens. Matter 9 9113
[26] McMullen T and Zaremba E 1978 Phys. Rev. B 18 3026
[27] Brewer J H 1994 Encyclopedia of Applied Physics vol 11 (New York: VCH) p 23
[28] Noakes D R, Brewer J H, Harshman D R, Ansaldo E J and Huang C Y 1987 Phys. Rev. B 35 6597
[29] Klauß H-H, Hillberg M, Wagener W, de Melo M A C, Litterst F J, Fricke M, Hesse J and Schreier E 1997

Hyperfine Interact. 104 319
[30] Bewley R I and Cywinski R 1998 Phys. Rev. B 58 11554
[31] Jackson T J, Binns C, Forgan E M, Morenzoni E, Niedermayer Ch, Glückler H, Hofer A, Luetkens H, Prokscha T,

Riseman T M, Schatz A, Birke M, Litterst J, Schatz G and Weber H P 2000 J. Phys.: Condens. Matter 12
1399

[32] Crook M R and Cywinski R 1997 J. Phys.: Condens. Matter 9 1149
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